MATH 1A - QUIZ 10 - SOLUTIONS

PEYAM RYAN TABRIZIAN

Name:

Instructions: You have 12 minutes to take this quiz, for a total of 10 points. Show your work! May your luck be integrable!
(1) (4 points) Using the definition of the integral, evaluate:

$$
\int_{2}^{5}(2-x)^{3} d x
$$

First of all $\Delta x=\frac{5-2}{n}=\frac{3}{n}$, and $x_{i}=2+\frac{3 i}{n}$. Therefore:

$$
\begin{aligned}
\int_{2}^{5}(2-x)^{3} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}\left(2-\left(2+\frac{3 i}{n}\right)\right)^{3} \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left(\frac{-3 i}{n}\right)^{3} \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left(\frac{(-27) i^{3}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{-81}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\lim _{n \rightarrow \infty} \frac{-81}{n^{4}}\left(\frac{n^{2}(n+1)^{2}}{4}\right) \\
& =-\frac{81}{4} \lim _{n \rightarrow \infty} \frac{n^{2}(n+1)^{2}}{n^{4}} \\
& =-\frac{81}{4}
\end{aligned}
$$

(2) (4 points) Calculate the following limit.

Note: The trick is to fish out a $\frac{1}{n}$, then to write this in terms of $\frac{i}{n}$, and to recognize that limit as an integral (and evaluate it)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}+\frac{n}{n^{2}+4}+\frac{n}{n^{2}+9}+\cdots+\frac{n}{n^{2}+n^{2}} \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{n}{n^{2}+i^{2}} \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{n^{2}}{n^{2}+i^{2}}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{n^{2}}{n^{2}\left(1+\frac{i^{2}}{n^{2}}\right)}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{1+\left(\frac{i}{n}\right)^{2}}\right) \\
= & \int_{0}^{1} \frac{1}{1+x^{2}} d x \\
= & {\left[\tan ^{-1}(x)\right]_{0}^{1} } \\
= & \tan ^{-1}(1)-\tan ^{-1}(0) \\
= & \frac{\pi}{4}-0 \\
= & \frac{\pi}{4}
\end{aligned}
$$

(3) (2 points) Find the derivative of the following function:

$$
f(x)=\int_{\sin (x)}^{1+e^{x}} e^{-t^{2}} d t
$$

Let F be an antiderivative of $e^{-t^{2}}$, then $f(x)=F\left(1+e^{x}\right)-F(\sin (x))$, so:

$$
\begin{aligned}
f^{\prime}(x) & =F^{\prime}\left(1+e^{x}\right) e^{x}-F^{\prime}(\sin (x)) \cos (x) \\
& =f\left(1+e^{x}\right) e^{x}-f(\sin (x)) \cos (x) \\
& =e^{-\left(1+e^{x}\right)^{2}} e^{x}-e^{-\sin ^{2}(x)} \cos (x)
\end{aligned}
$$

